Skip to main content
Log in

Serratia sp. scl1: isolation of a novel thermostable lipase producing microorganism which holds industrial importance

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Lipase being a hydrolysable enzyme plays a major role in serving various purposes of the industries. Thus, it is very important to have a sustainable and efficient source of this enzyme. In this present study, several microorganisms were isolated from medicinal effluent of a pharmaceutical industry that could produce efficient lipase activity. Among these isolates, a designated strain scl1 was isolated and based on the molecular and biochemical characterisation was tentatively assigned to the genus Serratia. Preliminary studies confirmed the strain scl1 was found to exhibit the highest production of lipase at a temperature and pH of 35 °C and 7, respectively under the incubation for 48 h. Further, the lipase activity was measured by following spectrophotometric method using pNPP as the substrate in which the Km and Vmax of the crude enzyme was found to be 3.349 × 10−3 M and 5.68 × 10−1 unit/mL, respectively. The extracellular crude lipase was found to show a temperature and pH optima of 75 °C and 8, respectively which gave a strong indication that the enzyme appeared to be highly thermostable. This study revealed the strain scl1 is able to produce a thermostable lipase which can meet the needs of the modern-day industrialization techniques. However, more work is required to purify the enzyme and get it ready for commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Hameed AM, Kither MK, Farmman MS (2013) Production and purification of lipase from Pseudomonas ecepacia and study some effected conditions on production Diyala. Agric Sci J 5(2):436–450

    Google Scholar 

  • Aktar L, Khan F, Islam T, Mitra S, Saha M (2016) Isolation and characterization of indigenous lipase producing bacteria from Lipid? Rich Environ Plant Tissue Cult Biotechnol 26(2):243–253

    Article  Google Scholar 

  • Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Indian J Biotechnol (IJBT) 6:141–158

    CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1994) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Bharathi D, Rajalakshmi G, Komathi S (2019) Optimization and production of lipase enzyme from bacterial strains isolated from petrol spilled soil. J King Saud Univ Sci 31(4):898–901

    Article  Google Scholar 

  • Boonmahome P, Mongkolthanaruk W (2013) Lipase-producing bacterium and its enzyme characterization. J Life Sci Technol 1(4):196–200

    Google Scholar 

  • Bora L, Gohain D, Das R (2013) Recent advances in production and biotechnological applications of thermostable and alkaline bacterial lipases. J Chem Technol Biotechnol 88(11):1959–1970

    CAS  Google Scholar 

  • Borel P, Armand M, Ythier P, Dutot G, Melin C, Senft M, Lafont H, Lairon D (1994) Hydrolysis of emulsions with different triglycerides and droplet sizes by gastric lipase in vitro. Effect on pancreatic lipase activity. J Nutr Biochem 5(3):124–133

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Brenner DJ, Staley JT, Krieg NR (2005) Classification of procaryotic organisms and the concept of bacterial speciation. Bergey’s manual «of systematic bacteriology. Springer, Boston, MA, pp 27–32

    Chapter  Google Scholar 

  • Burgess EJ, Hoyt LR, Randall MJ, Mank MM, Bivona JJ, Eisenhauer PL, Botten JW, Ballif BA, Lam YW, Wargo MJ, Boyson JE (2018) Bacterial lipoproteins constitute the TLR2-stimulating activity of serum amyloid A. J Immunol Res 201(8):2377–2384

    CAS  Google Scholar 

  • Cardenas F, De Castro MS, Sanchez-Montero JM, Sinisterra JV, Valmaseda M, Elson SW, Alvarez E (2001) Novel microbial lipases: catalytic activity in reactions in organic media. Enzyme Microb Technol 28(2–3):145–154

    Article  CAS  PubMed  Google Scholar 

  • Charoenpanich J, Suktanarag S, Toobbucha N (2011) Production of a thermostable lipase by Aeromonas sp. EBB-1 isolated from marine sludge in Angsila, Thailand. Sci Asis 37(2):105–114

    Article  CAS  Google Scholar 

  • Dandavate V, Jinjala J, Keharia H, Madamwar D (2009) Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis. Bioresour Technol 100(13):3374–3381

    Article  CAS  PubMed  Google Scholar 

  • Deeth HC (2020) Lipase action on milk fat. Dairy fat products and functionality. Springer, Cham, pp 21–39

    Chapter  Google Scholar 

  • Dharmsthiti S, Luchai S (1999) Production, purification and characterization of thermophilic lipase from Bacillus sp. THL027. FEMS Microbiol Lett 79(2):241–246

    Article  Google Scholar 

  • Facin BR, Melchiors MS, Valério A, Oliveira JV, Oliveira DD (2019) Driving immobilized lipases as biocatalysts: 10 years state of the art and future prospects. Ind Eng Chem Res 58(14):5358–5378

    Article  CAS  Google Scholar 

  • Francis G, Kerem Z, Makkar HP, Becker K (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88(6):587–605

    Article  CAS  PubMed  Google Scholar 

  • Freinkel RK, Shen Y (1969) The origin of free fatty acids in Sebum II: assay of the lipases of the cutaneous bacteria and effects of pH. J Investig Dermatol 53(6):422–427

    Article  CAS  PubMed  Google Scholar 

  • García-Silvera EE, Martínez-Morales F, Bertrand B, Morales-Guzmán D, Rosas-Galván NS, León-Rodríguez R, Trejo-Hernández MR (2018) Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production. Biotechnol Appl Biochem 65(2):156–172

    Article  PubMed  Google Scholar 

  • Ghamaria M, Alemzadehb I, Tabatabaee Yazdia F, Vossoughib M, Varidi M (2015) Purification and zymography of lipase from aspergillus niger PTCC5010. IJE Trans B Appl 28(8):1117–1123

    Google Scholar 

  • Goswami D, Basu JK, De S (2012) Lipase applications in oil hydrolysis with a case study on castor oil: a review. Crit Rev Biotechnol 33(1):81–96

    Article  CAS  PubMed  Google Scholar 

  • Gotor-Fernández V, Brieva R, Gotor V (2006) Lipases: useful biocatalysts for the preparation of pharmaceuticals. J Mol Catal B Enzym 40(3–4):111–120

    Article  Google Scholar 

  • Gupta R, Kumari A, Syal P, Singh Y (2015) Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology and cellular physiology. Prog Lipid Res 57:40–54

    Article  CAS  PubMed  Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89(1):17–34

    Article  CAS  PubMed  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39(2):235–251

    Article  CAS  Google Scholar 

  • Holt JG, Krieg NR et al (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Iizumi T, Nakamura K, Fukase T (1990) Purification and characterization of a thermostable lipase from newly isolated Pseudomonas sp. KWI-56. Agric Biol Chem 54(5):1253–1258

    CAS  Google Scholar 

  • Ilesanmi OI, Adekunle AE, Omolaiye JA, Olorode EM, Ogunkanmi AL (2020) Isolation, optimization and molecular characterization of lipase producing bacteria from contaminated soil. S Afr 8:e00279

    Google Scholar 

  • Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13(4):390–397

    Article  CAS  PubMed  Google Scholar 

  • Janssen, AE.,Vaidya, AM., Halling PJ (1996) Substrate specificity and kinetics of Candida rugosa lipase in organic media. Enzyme Microb Technol,18(5):340–6

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen S, Skov KW, Diderichsen B (1991) Cloning, sequence, and expression of a lipase gene from Pseudomonas cepacia: lipase production in heterologous hosts requires two Pseudomonas genes. J Bacteriol 173(2):559–567

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamini NR, Fujii T, Kurosu T, Iefuji H (2000) Production, purification and characterization of an extracellular lipase from the yeast, Cryptococcus sp. S-2. Process Biochem 36(4):317–324

    Article  CAS  Google Scholar 

  • Kim MH, Kim HK, Lee JK, Park SY, Oh TK (2000) Thermostable lipase of Bacillus stearothermophilus: high-level production, purification, and calcium-dependent thermostability. Biosci Biotechnol Biochem 64(2):280–286

    Article  CAS  PubMed  Google Scholar 

  • Kirana S, Arshada Z, Nosheenb S, Kamala S, Gulzara T, Majeeda MS, Jannata M, Rafiquec MA (2016) Microbial lipases: production and applications: a review. J Biochem Biotechnol Biomater 1(2):7–20

    Google Scholar 

  • Kumar A, Dhar K, Kanwar SS, Arora PK (2016) Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online 18(1):1–1

    Article  Google Scholar 

  • Lee SY, Rhee JS (1993) Production and partial purification of a lipase from Pseudomonas putida 3SK. Enzyme Microb Technol 15(7):617–623

    Article  CAS  Google Scholar 

  • Li H, Zhang X (2005) Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1. Protein Expr Purif 42(1):153–159

    Article  PubMed  Google Scholar 

  • Litthauer D, Ginster A, van Eeden SE (2002) Pseudomonas luteola lipase: a new member of the 320-residue Pseudomonas lipase family. Enzyme Microb Technol 30(2):209–215

    Article  CAS  Google Scholar 

  • Lotrakul P, Dharmsthiti S (1997) Purification and characterization of lipase from Aeromonas sobria LP004. J Biotechnol 54(2):113–120

    Article  CAS  PubMed  Google Scholar 

  • Maafi M, Maafi W (2014) Ф-order kinetics of photoreversible-drug reactions. Int J Pharm 471(1–2):536–543

    Article  CAS  PubMed  Google Scholar 

  • Mahima G, Krishnan H, Pandey GP (2016) Screening, identification, characterization and production of bacterial lipase from oil spilled Soil. Int J Curr Microbiol App Sci 5(3):745–763

    Article  Google Scholar 

  • Mukherjee AK, Bahaduri S (2016) Rapid acidolysis of palm oil with oleic acid by Thermomyces lanuginosus lipase and analysis of products by TLC and qualitative GC-MS technique. Adv Life Sci 5(21):9633–9637

    Google Scholar 

  • Nelson DL, Cox MM (2017) Lehninger principles of biochemistry, 7th edn. W.H. Freemant, New York

    Google Scholar 

  • Niemelä S (1983) Statistical evaluation of results from quantitative microbiological examinations. 2. NMKL Rapport (Sweden). Nordisk Metodik-Kommitte foer Livsmedel.

  • Nolasco-Soria H, Moyano-López F, Vega-Villasante F, del Monte-Martínez A, Espinosa-Chaurand D, Gisbert E, Nolasco-Alzaga HR (2018) Lipase and phospholipase activity methods for marine organisms. Lipases and Phospholipases. Humana Press, New York, NY, pp 139–167

    Chapter  Google Scholar 

  • Patel P, Desai P (2018) Isolation, identification and production of lipase producing bacteria from oil contaminated soil. BMR Microbiol 4:1–7

    Google Scholar 

  • Patnala HS, Kabilan U, Gopalakrishnan L, Rao RM, Kumar DS (2016) Marine fungal and bacterial isolates for lipase production: a comparative study. Adv Food Nutr Res 78:71–94

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Saha S, Pramanick S, Chattopadhyay S (2018) Standardization of process parameters for the maximum production of extracellular lipase by bacteria, isolated from indigenous sources. Int Res J Eng Technol 2:682–688

    Google Scholar 

  • Plou FJ, Ferrer M, Nuero OM, Calvo MV, Alcalde M, Reyes F, Ballesteros A (1998) Analysis of Tween 80 as an esterase/lipase substrate for lipolytic activity assay. Biotechnol Tech 12(3):183–186

    Article  CAS  Google Scholar 

  • Ray A (2012) Application of lipase in industry. Asian J Pharm Tech 2(2):33–37

    Google Scholar 

  • Sachan S, Singh A (2015) Lipase enzyme and its diverse role in food processing industry. Everyman’s Sci 1:214

    Google Scholar 

  • Singh AK, Mukhopadhyay M (2015) Overview of fungal lipase: a review. Appl Biochem Biotechnol 66(2):486–520

    Article  Google Scholar 

  • Sirisha E, Rajasekar N, Narasu ML (2010) Isolation and optimization of lipase producing bacteria from oil contaminated soils. Adv Biol Res 4(5):249–252

    CAS  Google Scholar 

  • Sugihara A, Tani T, Tominaga Y (1991) Purification and characterization of a novel thermostable lipase from Bacillus sp. J Biochem 109(2):211–216

    CAS  PubMed  Google Scholar 

  • Sugihara A, Ueshima M, Shimada Y, Tsunasawa S, Tominaga Y (1992) Purification and characterization of a novel thermostable lipase from Pseudomonas cepacia. J Biochem 112(5):598–603

    Article  CAS  PubMed  Google Scholar 

  • Thangaraj B, Solomon PR (2019) Immobilization of lipases-A review. Part i: Enzyme immobilization. Chembioeng Rev 6(5):157–166

    Article  CAS  Google Scholar 

  • Tribedi P, Sarkar S, Mukherjee K, Sil AK (2012) Isolation of a novel Pseudomonas sp from soil that can efficiently degrade polyethylene succinate. Environ Sci Pollut Res 19(6):2115–2224

    Article  CAS  Google Scholar 

  • Van Nevel CJ, Demeyer DI (1996) Influence of pH on lipolysis and biohydrogenation of soybean oil by rumen contents in vitro. Reprod Nutr Dev 36(1):53–63

    Article  PubMed  Google Scholar 

  • Wang Y, Srivastava KC, Shen GJ, Wang HY (1995) Thermostable alkaline lipase from a newly isolated thermophilic Bacillus strain A30-1 (ATCC 53841). J Ferment Bioeng 79(5):433–438

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibani Sen Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 309 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.R., Sultana, S.S., Rajak, S. et al. Serratia sp. scl1: isolation of a novel thermostable lipase producing microorganism which holds industrial importance. Antonie van Leeuwenhoek 115, 1335–1348 (2022). https://doi.org/10.1007/s10482-022-01776-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-022-01776-y

Keywords

Navigation